Copied to
clipboard

G = C2×C24⋊C22order 128 = 27

Direct product of C2 and C24⋊C22

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C2×C24⋊C22, C249C23, C257C22, C4216C23, C23.58C24, C22.115C25, C22.1182+ 1+4, (C2×Q8)⋊9C23, C22⋊C411C23, (C2×C4).105C24, (C2×C42)⋊69C22, C22≀C237C22, (C2×D4).309C23, C4.4D488C22, (C22×Q8)⋊37C22, C2.46(C2×2+ 1+4), (C22×C4).1213C23, (C22×D4).432C22, (C2×C22≀C2)⋊28C2, (C2×C4.4D4)⋊57C2, (C2×C22⋊C4)⋊55C22, SmallGroup(128,2258)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×C24⋊C22
C1C2C22C23C24C25C2×C22≀C2 — C2×C24⋊C22
C1C22 — C2×C24⋊C22
C1C23 — C2×C24⋊C22
C1C22 — C2×C24⋊C22

Generators and relations for C2×C24⋊C22
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, fbf=be=eb, gbg=bde, gcg=cd=dc, ce=ec, fcf=cde, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >

Subgroups: 1436 in 704 conjugacy classes, 388 normal (4 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C24, C2×C42, C2×C22⋊C4, C22≀C2, C4.4D4, C22×D4, C22×Q8, C25, C2×C22≀C2, C2×C4.4D4, C24⋊C22, C2×C24⋊C22
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C24⋊C22, C2×2+ 1+4, C2×C24⋊C22

Smallest permutation representation of C2×C24⋊C22
On 32 points
Generators in S32
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 26)(27 28)(29 30)(31 32)
(1 6)(2 5)(3 11)(4 12)(7 8)(9 16)(10 15)(13 20)(14 19)(17 27)(18 28)(21 23)(22 24)(25 26)(29 30)(31 32)
(1 4)(2 3)(5 11)(6 12)(7 32)(8 31)(9 16)(10 15)(13 20)(14 19)(17 18)(21 22)(23 24)(25 29)(26 30)(27 28)
(1 5)(2 6)(3 12)(4 11)(7 31)(8 32)(9 14)(10 13)(15 20)(16 19)(17 22)(18 21)(23 28)(24 27)(25 30)(26 29)
(1 12)(2 11)(3 5)(4 6)(7 30)(8 29)(9 15)(10 16)(13 19)(14 20)(17 23)(18 24)(21 27)(22 28)(25 31)(26 32)
(1 18)(2 17)(3 27)(4 28)(5 21)(6 22)(7 10)(8 9)(11 23)(12 24)(13 31)(14 32)(15 29)(16 30)(19 25)(20 26)
(1 10)(2 9)(3 19)(4 20)(5 13)(6 14)(7 18)(8 17)(11 15)(12 16)(21 31)(22 32)(23 29)(24 30)(25 27)(26 28)

G:=sub<Sym(32)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,6)(2,5)(3,11)(4,12)(7,8)(9,16)(10,15)(13,20)(14,19)(17,27)(18,28)(21,23)(22,24)(25,26)(29,30)(31,32), (1,4)(2,3)(5,11)(6,12)(7,32)(8,31)(9,16)(10,15)(13,20)(14,19)(17,18)(21,22)(23,24)(25,29)(26,30)(27,28), (1,5)(2,6)(3,12)(4,11)(7,31)(8,32)(9,14)(10,13)(15,20)(16,19)(17,22)(18,21)(23,28)(24,27)(25,30)(26,29), (1,12)(2,11)(3,5)(4,6)(7,30)(8,29)(9,15)(10,16)(13,19)(14,20)(17,23)(18,24)(21,27)(22,28)(25,31)(26,32), (1,18)(2,17)(3,27)(4,28)(5,21)(6,22)(7,10)(8,9)(11,23)(12,24)(13,31)(14,32)(15,29)(16,30)(19,25)(20,26), (1,10)(2,9)(3,19)(4,20)(5,13)(6,14)(7,18)(8,17)(11,15)(12,16)(21,31)(22,32)(23,29)(24,30)(25,27)(26,28)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32), (1,6)(2,5)(3,11)(4,12)(7,8)(9,16)(10,15)(13,20)(14,19)(17,27)(18,28)(21,23)(22,24)(25,26)(29,30)(31,32), (1,4)(2,3)(5,11)(6,12)(7,32)(8,31)(9,16)(10,15)(13,20)(14,19)(17,18)(21,22)(23,24)(25,29)(26,30)(27,28), (1,5)(2,6)(3,12)(4,11)(7,31)(8,32)(9,14)(10,13)(15,20)(16,19)(17,22)(18,21)(23,28)(24,27)(25,30)(26,29), (1,12)(2,11)(3,5)(4,6)(7,30)(8,29)(9,15)(10,16)(13,19)(14,20)(17,23)(18,24)(21,27)(22,28)(25,31)(26,32), (1,18)(2,17)(3,27)(4,28)(5,21)(6,22)(7,10)(8,9)(11,23)(12,24)(13,31)(14,32)(15,29)(16,30)(19,25)(20,26), (1,10)(2,9)(3,19)(4,20)(5,13)(6,14)(7,18)(8,17)(11,15)(12,16)(21,31)(22,32)(23,29)(24,30)(25,27)(26,28) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,26),(27,28),(29,30),(31,32)], [(1,6),(2,5),(3,11),(4,12),(7,8),(9,16),(10,15),(13,20),(14,19),(17,27),(18,28),(21,23),(22,24),(25,26),(29,30),(31,32)], [(1,4),(2,3),(5,11),(6,12),(7,32),(8,31),(9,16),(10,15),(13,20),(14,19),(17,18),(21,22),(23,24),(25,29),(26,30),(27,28)], [(1,5),(2,6),(3,12),(4,11),(7,31),(8,32),(9,14),(10,13),(15,20),(16,19),(17,22),(18,21),(23,28),(24,27),(25,30),(26,29)], [(1,12),(2,11),(3,5),(4,6),(7,30),(8,29),(9,15),(10,16),(13,19),(14,20),(17,23),(18,24),(21,27),(22,28),(25,31),(26,32)], [(1,18),(2,17),(3,27),(4,28),(5,21),(6,22),(7,10),(8,9),(11,23),(12,24),(13,31),(14,32),(15,29),(16,30),(19,25),(20,26)], [(1,10),(2,9),(3,19),(4,20),(5,13),(6,14),(7,18),(8,17),(11,15),(12,16),(21,31),(22,32),(23,29),(24,30),(25,27),(26,28)]])

38 conjugacy classes

class 1 2A···2G2H···2S4A···4R
order12···22···24···4
size11···14···44···4

38 irreducible representations

dim11114
type+++++
imageC1C2C2C22+ 1+4
kernelC2×C24⋊C22C2×C22≀C2C2×C4.4D4C24⋊C22C22
# reps169166

Matrix representation of C2×C24⋊C22 in GL12(ℤ)

100000000000
010000000000
001000000000
000100000000
0000-10000000
00000-1000000
000000-100000
0000000-10000
000000001000
000000000100
000000000010
000000000001
,
100000000000
1-10000000000
10-1000000000
000100000000
0000-10000000
0000-11000000
0000-10100000
0000000-10000
00000000-1000
000000000-100
000000000010
000000000001
,
-100000000000
0-10000000000
-101000000000
-100100000000
000010000000
000001000000
000010-100000
0000100-10000
000000001000
000000000-100
000000000010
00000000000-1
,
100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
00000000-1000
000000000-100
0000000000-10
00000000000-1
,
-100000000000
0-10000000000
00-1000000000
000-100000000
0000-10000000
00000-1000000
000000-100000
0000000-10000
00000000-1000
000000000-100
0000000000-10
00000000000-1
,
-102000000000
001-100000000
001000000000
0-11000000000
000010-200000
000000-110000
000000-100000
000001-100000
000000000010
000000000001
000000001000
000000000100
,
-120000000000
010000000000
010-100000000
01-1000000000
00001-2000000
00000-1000000
00000-1010000
00000-1100000
000000000100
000000001000
000000000001
000000000010

G:=sub<GL(12,Integers())| [1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1],[1,1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1],[-1,0,-1,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],[-1,0,0,0,0,0,0,0,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0] >;

C2×C24⋊C22 in GAP, Magma, Sage, TeX

C_2\times C_2^4\rtimes C_2^2
% in TeX

G:=Group("C2xC2^4:C2^2");
// GroupNames label

G:=SmallGroup(128,2258);
// by ID

G=gap.SmallGroup(128,2258);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,232,1430,1059,2915,570]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*b*f=b*e=e*b,g*b*g=b*d*e,g*c*g=c*d=d*c,c*e=e*c,f*c*f=c*d*e,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽